Para el norteamericano Walter L. Wagner y el español Luis Sancho, el fin del mundo está mucho más cerca de lo que nadie pueda pensar. De hecho, el día del juicio final podría coincidir, si alguien no lo impide, con la puesta en marcha (prevista para este verano) del LHC, el mayor acelerador colisionador de partículas jamás construido por el hombre. Cuando la colosal máquina entre en funcionamiento en el CERN, el laboratorio de física europeo, cuyo anillo acelerador de 27 kilómetros es el mayor que existe en el planeta, los científicos pondrán en juego fuerzas de una magnitud desconocida en el Universo desde su creación misma, hace 13.700 millones de años, en el explosivo instante que la Ciencia (y la opinión pública) conoce como Big Bang.
Wagner, que estudió Física e investigó sobre rayos cósmicos en la Universidad de California en Berkeley, y Sancho, que se define a sí mismo como un «investigador de la teoría del tiempo», recogen en efecto las dudas y temores ya expresadas por algunos científicos. Entre ellas, la posibilidad de que, al conectarse, el LHC sea capaz de generar uno o múltiples agujeros negros microscópicos, alguno de los cuales, en lugar de evaporarse, como predice la teoría formulada por Stephen Hawking, alcance una estabilidad que le permita crecer hasta tragarse al planeta entero. O la posibilidad de que se generen monopolos magnéticos, unas partículas «exóticas» que tendrían la capacidad de dejar «fuera de servicio» a los núcleos atómicos ordinarios. O que los quarks generados en los experimentos se unan entre sí de forma diferente a la habitual, contagiando a toda la materia de la Tierra y convirtiéndola en materia extraña
A 100 metros bajo tierra, en la frontera entre Francia y Suiza, el Gran Colisionador de Hadrones, el mayor instrumento científico jamás construido, emerge como una catedral de cables y acero dispuesta a arrancar los secretos de la creación del universo. En una fecha aún por determinar, en julio o agosto, dos haces de protones se cruzarán a una velocidad próxima a la de la luz en el interior de un túnel en forma de anillo de 27 kilómetros de circunferencia. En cuatro puntos diferentes, estos haces chocarán entre sí en enormes colisionadores, cuya misión consiste en analizar cada segundo las partículas resultantes de la colisión de dos mil millones de protones en condiciones semejantes a las registradas justo después del Big Bang.
Por el momento, los técnicos se afanan en poner a punto los colisionadores, el mayor de los cuales, Atlas, mide 25 metros de diámetro por 46 metros de largo. El helio líquido permite enfriar hasta una temperatura de -271 grados los imanes superconductores, que son los que se encargan de orientar los haces, el uno hacia el otro. Dentro de los colisionadores, la temperatura superará a la del Sol. Las colisiones podrían crear materia oscura y energía oscura, que componen el 96% del universo. Es esta perspectiva la que suscita inquietud. «Recibimos muchas llamadas de personas preocupadas», reconoce Sophie Tesauri, de la oficina de prensa del CERN. «Pero no hay nada que temer: la cantidad de materia oscura será ínfima», agrega. No todo el mundo comparte su optimismo.
Incertidumbre científica
"Vamos a poder entender la simetría entre la cantidad de materia y la antimateria al comienzo del universo, de hecho sabemos que en el universo existe una cantidad muy grande de materia que no conocemos, y hay una oportunidad de que esa materia pueda ser encontrada aquí". En realidad, los científicos no saben exactamente a lo que se van a enfrentar. "Como nunca se ha hecho un experimento de estas características, no sabemos con lo que nos vamos a encontrar. Intuimos, tenemos una teoría y vamos a ver si se confirma, pero no sabemos lo que está pasando e intentaremos entenderlo con los datos que obtengamos", aseguró el físico alemán Daniel Dobos. Por su parte, el físico teórico español Álvaro de Rújula lo definió como un trabajo de explorador: "No sabemos lo que nos vamos a encontrar, tenemos sospechas, esperanzas de que podamos definir la partícula de Higgs, que creemos que es la responsable de la masa de todas las partículas".
"Cada vez que investigamos a mayor energía y entendemos lo que pasa, hacemos un paso más", afirmó de Rújula, quien agregó: "Esta vez vamos a utilizar 10 veces más energía que nunca antes en la historia, por lo que nos acercaremos 100 veces más a las condiciones del origen del universo, que es lo que nos interesa". "Eso, si entendemos los datos", acotó el investigador español, con la misma cautela con la que previamente hablaron el resto de entrevistados. En el proyecto, trabajan 2.100 físicos provenientes de 80 países distintos.
Wagner, que estudió Física e investigó sobre rayos cósmicos en la Universidad de California en Berkeley, y Sancho, que se define a sí mismo como un «investigador de la teoría del tiempo», recogen en efecto las dudas y temores ya expresadas por algunos científicos. Entre ellas, la posibilidad de que, al conectarse, el LHC sea capaz de generar uno o múltiples agujeros negros microscópicos, alguno de los cuales, en lugar de evaporarse, como predice la teoría formulada por Stephen Hawking, alcance una estabilidad que le permita crecer hasta tragarse al planeta entero. O la posibilidad de que se generen monopolos magnéticos, unas partículas «exóticas» que tendrían la capacidad de dejar «fuera de servicio» a los núcleos atómicos ordinarios. O que los quarks generados en los experimentos se unan entre sí de forma diferente a la habitual, contagiando a toda la materia de la Tierra y convirtiéndola en materia extraña
A 100 metros bajo tierra, en la frontera entre Francia y Suiza, el Gran Colisionador de Hadrones, el mayor instrumento científico jamás construido, emerge como una catedral de cables y acero dispuesta a arrancar los secretos de la creación del universo. En una fecha aún por determinar, en julio o agosto, dos haces de protones se cruzarán a una velocidad próxima a la de la luz en el interior de un túnel en forma de anillo de 27 kilómetros de circunferencia. En cuatro puntos diferentes, estos haces chocarán entre sí en enormes colisionadores, cuya misión consiste en analizar cada segundo las partículas resultantes de la colisión de dos mil millones de protones en condiciones semejantes a las registradas justo después del Big Bang.
Por el momento, los técnicos se afanan en poner a punto los colisionadores, el mayor de los cuales, Atlas, mide 25 metros de diámetro por 46 metros de largo. El helio líquido permite enfriar hasta una temperatura de -271 grados los imanes superconductores, que son los que se encargan de orientar los haces, el uno hacia el otro. Dentro de los colisionadores, la temperatura superará a la del Sol. Las colisiones podrían crear materia oscura y energía oscura, que componen el 96% del universo. Es esta perspectiva la que suscita inquietud. «Recibimos muchas llamadas de personas preocupadas», reconoce Sophie Tesauri, de la oficina de prensa del CERN. «Pero no hay nada que temer: la cantidad de materia oscura será ínfima», agrega. No todo el mundo comparte su optimismo.
Incertidumbre científica
"Vamos a poder entender la simetría entre la cantidad de materia y la antimateria al comienzo del universo, de hecho sabemos que en el universo existe una cantidad muy grande de materia que no conocemos, y hay una oportunidad de que esa materia pueda ser encontrada aquí". En realidad, los científicos no saben exactamente a lo que se van a enfrentar. "Como nunca se ha hecho un experimento de estas características, no sabemos con lo que nos vamos a encontrar. Intuimos, tenemos una teoría y vamos a ver si se confirma, pero no sabemos lo que está pasando e intentaremos entenderlo con los datos que obtengamos", aseguró el físico alemán Daniel Dobos. Por su parte, el físico teórico español Álvaro de Rújula lo definió como un trabajo de explorador: "No sabemos lo que nos vamos a encontrar, tenemos sospechas, esperanzas de que podamos definir la partícula de Higgs, que creemos que es la responsable de la masa de todas las partículas".
"Cada vez que investigamos a mayor energía y entendemos lo que pasa, hacemos un paso más", afirmó de Rújula, quien agregó: "Esta vez vamos a utilizar 10 veces más energía que nunca antes en la historia, por lo que nos acercaremos 100 veces más a las condiciones del origen del universo, que es lo que nos interesa". "Eso, si entendemos los datos", acotó el investigador español, con la misma cautela con la que previamente hablaron el resto de entrevistados. En el proyecto, trabajan 2.100 físicos provenientes de 80 países distintos.